Overexpression of a mutant basic helix-loop-helix protein HFR1, HFR1-deltaN105, activates a branch pathway of light signaling in Arabidopsis.

نویسندگان

  • Ki-Young Yang
  • Young-Mi Kim
  • Seunghee Lee
  • Pill-Soon Song
  • Moon-Soo Soh
چکیده

The HFR1, a basic helix-loop-helix protein, is required for a subset of phytochrome A-mediated photoresponses in Arabidopsis. Here, we show that overexpression of the HFR1-deltaN105 mutant, which lacks the N-terminal 105 amino acids, confers exaggerated photoresponses even in darkness. Physiological analysis implied that overexpression of HFR1-deltaN105 activated constitutively a branch pathway of light signaling that mediates a subset of photomorphogenic responses, including germination, de-etiolation, gravitropic hypocotyl growth, blocking of greening, and expression of some light-regulated genes such as CAB, DRT112, PSAE, PSBL, PORA, and XTR7, without affecting the light-responsiveness of anthocyanin accumulation and expression of other light-regulated genes such as CHS and PSBS. Although the end-of-day far-red light response and petiole elongation were suppressed in the HFR1-deltaN105-overexpressing plants, flowering time was not affected by HFR1-deltaN105. In addition, the HFR1-deltaN105-overexpressing plants showed hypersensitive photoresponses in the inhibition of hypocotyl elongation, dependently on phytochrome A, FHY1, and FHY3 under FR light or phyB under R light, respectively. Moreover, our double mutant analysis suggested that the hypersensitive photoresponse is due to functional cooperation between HFR1-deltaN105 and other light-signaling components including HY5, a basic leucine zipper protein. Taken together, our results of gain-of-function approach with HFR1-deltaN105 suggest the existence of a complex and important basic helix-loop-helix protein-mediated transcriptional network controlling a branch pathway of light signaling and provide a useful framework for further genetic dissection of light-signaling network in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis.

Arabidopsis thaliana seedlings undergo photomorphogenesis in the light and etiolation in the dark. Long Hypocotyl in Far-Red 1 (HFR1), a basic helix-loop-helix transcription factor, is required for both phytochrome A-mediated far-red and cryptochrome 1-mediated blue light signaling. Here, we report that HFR1 is a short-lived protein in darkness and is degraded through a 26S proteasome-dependent...

متن کامل

Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling.

Several positive regulators of phytochrome A signaling--e.g., LAF1, HFR1, and HY5--operate downstream from the photoreceptor, but their relative sites of action in the transduction pathway are unknown. Here, we show that HFR1RNAi/laf1 or hfr1-201/LAF1RNAi generated by RNA interference (RNAi) has an additive phenotype under FR light compared with the single mutants, hfr1-201 or laf1. This result...

متن کامل

Repression of light signaling by Arabidopsis SPA1 involves post-translational regulation of HFR1 protein accumulation.

Arabidopsis uses two major classes of photoreceptors to mediate seedling de-etiolation. The cryptochromes (cry1 and cry2) absorb blue/ultraviolet-A light, whereas the phytochromes (phyA-phyE) predominantly regulate responses to red/far-red light. Arabidopsis COP1 represses light signaling by acting as an E3 ubiquitin ligase in the nucleus, and is responsible for targeted degradation of a number...

متن کامل

Arabidopsis HFR1 Is a Potential Nuclear Substrate Regulated by the Xanthomonas Type III Effector XopDXcc8004

XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicit...

متن کامل

COP1 and phyB Physically Interact with PIL1 to Regulate Its Stability and Photomorphogenic Development in Arabidopsis.

In Arabidopsis thaliana, the cryptochrome and phytochrome photoreceptors act together to promote photomorphogenic development. The cryptochrome and phytochrome signaling mechanisms interact directly with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a RING motif-containing E3 ligase that acts to negatively regulate photomorphogenesis. COP1 interacts with and ubiquitinates the transcription factors t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2003